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Optimal Frequency-Domain System Realization

with Weighting

Jer-Nan Juang *and Peiman G. Maghami t

NASA Langley Research Center

Hampton, VA 23681

Abstract

Several approaches are presented to identify an experimental system model

directly from frequency response data. The formulation uses a matrix-fraction

description as the model structure. Frequency weighting such as exponential

weighting is introduced to solve a weighted least-squares problem to obtain

the coefficient matrices for the matrix-fraction description. A multi-variable

state-space model can then be formed using the coefficient matrices of the

matrix-fraction description. Three different approaches are introduced to fine-

tune the model using nonlinear programming methods to minimize the desired

cost function. The first method uses an eigenvaluc assignment technique to

reassign a subset of system poles to improve the identified model. The second

method deals with thc model in the real Schur or modal form, reassigns a

subset of system poles, and adjusts the columns (rows) of the input (output)

influence matrix using a nonlinear optimizer. The third method also optimizes

a subset of poles, but the input and output influence matrices axe refined at

every optimization step through least-squares procedures.

1 Introduction

One major objective of system identification is to provide mathematical models for

dynamics and control analysis and designs. However, models of systems can have
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various forms, such as transfer functions, differential or differenceequations, and

state-spaceequations. A frequency-domainstate-spaceidentification method [1 - 5]

providesa state-spacemodel of a linear systemfrom frequencyresponsedata.

The method called the State-SpaceFrequencyDomain (SSFD) identification al-

gorithm [2] can estimate Markov parameters (pulse response)from the frequency

responsefunction (FRF) without window distortion when an arbitrary frequency
weighting is usedto shapethe estimation error. The method usesa rational matrix

fraction description (the ratio of a matrix polynomial and a monicscalarpolynomial

denominator) to curve-fit the frequencydata and compute the Markov parameters

from FRF. The curve-fitting problemmust bc solvedeither by nonlinearoptimization

techniquesor by linear approximatealgorithmswith severaliterations. To obtain the

state-spacemodels from the Markov parameters,the EigensystemRealizationAlgo-

rithm (ERA) or its variant ERA/DC is used[5].

Frequencydomain methods presentedin Rcfs. [3, 4, 5] start with identifying a

left matrix-fraction description (LMFD) of the transfer function matrix. The ad-
vantageof using the LMFD, as an intermediate model betweenthe data and the

desiredfinal state-spacemodel, is that from frequencyresponsedata to the LMFD

is a linear least-squaresproblem, which is easyto solve. This method works quite

well when the frequencyresponsedata are fairly accurate;however,it might yield

unstable, erroneousmodels if the data contains too much distortion and/or error.
Data distortion in the frequencydomain is causedby a number of factors; limited

samplingfrequency,filters to removenoise,and lack of periodicity. This data dis-

tortion often causeunstablemodesto be presentin the identified systemmodel. An

improved method was introduced in Ref. [6] to deal with the problem when data

distortion is present. The idea is to stabilize or removethe unstablemodesbefore

expandingthe matrix-fraction description (MFD) into the Markov parameters(pulse
responses).This approachavoidsintroducing unstable modeswhile still maintaining

the frequencyresponsecloseto the data.

In this paper, exponential frequencyweighting [2,7] is usedto solvea weighted

least-squaresproblemfor the LMFD coefficientmatrices. A multi-variablestate-space
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model is thcn realizedfrom the LMFD coefficientmatrices. To improvethe identified

modcl, nonlinear programmingmethods [8]arc used to fine-tune the model param-

eters. There are three different formulations introduced in this paper for parameter

optimization. In all three formulations, the objective function is defined as the error

between the actual FRF and the synthesized FRF using the identified space-space

model. The first formulation uses a general system realization, and utilizes nonlinear

programming along with an eigcnvaluc assignment [9 - 11] technique to optimize a

subset of system poles. The second formulation deals with system realizations in

the real Schur or modal forms, and uses a subset of system poles, as well as some

coefficients to adjust the columns (rows) of the input (output) influence matrix for

parameter optimization. The third formulation is similar to the second, but the input

and output influence matrices are computed at every optimization step through least-

squares procedures. Experimental data from a NASA testbed with fifteen inputs and

fourteen outputs are used with a total of two hundreds and ten transfer functions to

demonstrate the concepts proposed in this paper.

2 Weighted Least-Squares Method

Civcn the system frequency response function G(zk) at the frequency point zk, con-

sider the left matrix-fraction

G(zk) = _-l(zk)9(z_) (1)

where

_(zk) : I,_+ _lz; 1+... + _pz;p (2)

_(zk) = _0 + BlZk-1 +"" + _pzk -p (3)

are matrix polynomials with Im being an identity matrix of order m. Every _i is

an m × m real square matrix and each _ is an m x r real rectangular matrix. The

factorization in Eq. (1) is not unique. For convcnience and simplicity, one can choose

the orders of both polynomials to be equal to p.
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Pre-multiplying Eq. (1) by a(zk) produces

(4)

which can be rearranged into

G(zk) = -alC(zk)z; _ ..... apC(zk)z; p

+ _o + Zlz; 1+"" + Z,,z; p (5)

or

G(zk) = OG_ (6)

where the matrix O, of dimension m x [p(m + r) + r], and the matrix _k, of dimension

[p(m + r) + r] x r, are defined as

0_--[o_1 ..- c_p _o _1 _2 -.. _p] (7)

G(zk)z; 1

C(zk)z; p

gk = I, (8)

l_z; 1

I_z-;p

Here, I_ is an r x r identity matrix• With G(zk) and z[ _ known, Eq. (5) or (6) is a

linear equation. Because G(zk) is known at Zk = e_ _ (k = 1,...,g), there are g

equations available.

The parameter matrix O in Eq. (6) is a real matrix whereas G(zk) and Gk are

both complex matrices. Thus Eq. (6) is a complex matrix equation with a total of g

complex equations. Let us define

Gk = [Real(G(zk)) Imag(G(zk))] and Ck = [Real(_k) Imag(Gk)] (9)

4



Equation (6) may be rewritten as

8k = OGk (10)

Equation (10) is a real matrix equation consisting of 26 linear equations for computing

the parameter matrix O. The matrix Gk at the frequency point k is an m x 2r matrix,

whercas _k is a [p(m + r) + r] x 2r matrix.

2.1 Recursive Formulation

To solve Eq. (10), let us first define a weighted cost function to be minimized as

k

J((_,k) = _--_w k-i [[ O(k)Ot-i- G'_-i [I22 (11)
i=1

where 0 < w _< 1 is a forgetting factor weighting the frcquency data. The data at

thc lowest frequency point is given unit wcight, but data that is k frcquency points

higher is weighted by w k. The method is commonly called cxponcntial forgetting.

The cost function defined in Eq. (11) is motivated by the fact that accelerometers are

commonly used as the measurement device in structural testing. The corresponding

frequency response functions have better response levels in the high frequency range.

Identifying lower frequency information in the presence of measurement noise becomes

a problem. One way to solve this problem is to weight more the lower frequency rcgion.

On the other hand, displacement sensors have better response capability for the low

frequency region. For this case, thc forgetting factor may be switched to weight the

high frequency region more than the lower frequency region. The form of Eq. (11) is

unchanged cxcept for the index g - i is replaced by i.

Using recursive least squares, the solution that minimizes Eq. (11) is

(3(k) =¢(k)P(k) (12)

whore

k

= wk-i[7-_ _T¢(k) (13)
i=l

-1
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The matrix P(k) is the inverse of the frequency data correlation matrix weighted by

the forgetting factor w. Note that the matrix P(k) is positive definite. From the

definition of P(k), application of the matrix inversion lemma yields

-1

k-_ _-,-_ _ _ ]-1

= [wP-l(k - 1) + ¢t_k_Tk] -1

- 1P(k- 1)- 1P(k - 1)_e_kK(k- 1)
W W

whcre

K:(k - 1) = [whr + O[_kP(k - 1)Ot-k]-lOT_kP(k -- 1)

Similarly, the quantity ¢(k + 1) at frequency point k + 1 can be written as

k

¢(k) v" wk+l-_d "_
i=l

= w¢(k- 1)+ G-,0[_,

Substituting Eqs. (15) and (16) into Eq. (12) yield the parameter O(k)

o(k) = e(k)P(k)

= [we(k- 1)+ Ge_k0T_k] [1p(k- 1)- 1p(k- 1)0,-kK:(k- 1)]

= o(k- 11+ [G-_- o(k- _)G-_]_(k- 1)

wherc the last equality results from the following

= 1 {[W/2r+d[_,P(k-- 1)¢_-d-¢[_kP(k- 1)G-,} tC(k - 1)
W

= tC(k- 1)

(15)

(16)

(17)

(18)

(19)
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The parameterO(k) which minimizes the cost function is given recursivelyby

Oe-k = [Real(G(ze-k)) Imag(G(ze-k))]

_k z

a( Z -k)Z;2k

G(Ze-k)Z[2 
ir

Irz[2k

• • o

I z[\

; Zg-k _-- eJ_

Ot-k = [Real(_t-k) Imag(G_-k)]

K:(k- 1) = [wI2r +OTkp(k - 1)Ot-kl-lOTkp(k-- 1)

Oe-k = O(k-- 1)O_-k

P(k) -- 1p(k -1) - l p(k -1)¢e-k/C(k-1)
W W

O(k) = O(k-1)+ [0__k--Oe-k]K_(k--1)

At any specific frequency point k, the m x 2r FRF matrix 0e-k is given, where r is the

number of inputs, m is thc numbcr of outputs, and t_ is thc total number of frequency

points to be used for the identification process. The [p(r + m) + r] x r complex matrix

Gk is then computcd where p is an integer large enough to satisfy the constraint

pm > n (the system order)• The 2r x [p(r + m) + r] matrix tC(k- 1) is the update

gain determined by the matrix P(k- 1) of dimension [p(r + m) + r] x _(r + m) + r],

the matrix Oe-k of dimension [p(r + m) + r] x 2r, and the scalar w. The initial values

of P(0) and O(0) can be arbitrarily assigned, normally, P(0) and O(0) are assigned

as dI and 0, respectively, where d is a large positive number, I is an identity matrix

dimensioned [p(r + m) + r] x [p(r + m) + r], and 0 is a zero matrix dimensioned

m × [V(r+ m) + r].
In the recursive process, special care must be taken to ensure that both matrices



[wI2,. + _T_kp(k - 1)_t_k] -1 and P(k) must be symmetric and positive definite. In

theory, inverting a positive-definite matrix results in another positive-definite matrix.

In practice, any numerical error in the matrix inversion process at any step may

accumulate large enough errors to destroy its symmctry and positive-definiteness. It

eventually leads to an unstable solution, i.e., the parameter O will not converge to a

constant value when k --+ t. One simple way to eliminate the inversion problem is

to take only the symmetric part of the inverted matrix at every recursion step, i.e.,

½{[wI2,. +_TkP(k-- 1)¢e-k] -1 + ([WI2,- +_T_kp(k- 1)_e-k]-l)T}. This will guarantee

that the inverted matrix is symmetric.

2.2 Batch Formulation

Recursive approaches axe better suited for computations in real time, i.e., parameters

are computed as data becomes available. Often, experimental data from a completed

test is available which allows all calculations to bc performed at once. A batch version

is presented in this section. Stacking up the 2e equations in Eq. (10) yields

where

O=oO (20)

=

The cost function J shown in Eq.

solution for O according to Eqs. (12), (13), (14) with k = e,

- -T - ~T --I

where

[00 O1 "'" Oe]

[ _0 01 "'" Oe ] (21)

(11) is minimized by solving the least-squares

(22)

0_,= [ Oo wO, ... wtOt ] (23)

The subscript w associated with _ signifies the forgetting factor w inserted into

with an appropriate power at each frequency point.

The weighting w e for the highest frequency at the frequency point g can be quite

small depending on the length _ of the data and the choice of the forgetting factor w.
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Fox example, w e ._ 4.3 × 10 -5 with g : 1000 and w = 0.99. Unless the amplitudes of

those frequencies near the highest frequency arc in the order of 10 -_, their contribution

to the identification process may become negligible. Using accelerometers, the ratio

of the highcst frequency to the lowest frequency can be as high as 103 to 105. For

this case, the forgetting factor used in Eq. (23) is indeed a good weighting technique

to perform a better low-frequency identification.

On the other hand, one may prefer to have freedom of choosing a weighting factor.

A slight modification of Eq. (23) will provide such freedom, i.e.,

_: [_0 w1_1 "" were ] (24)

The quantities wl, w2,... ,we, can be all independent. They may be randomly or

specifically chosen. Some obvious choices include

Wk e -l°O-k)/e 1 1
= , wk=_, wk= k---_; k= 1,2,...,/_

For the case where the low frequency resolution is better than the high frequency

rcsolution, thc weighting must be reversed.

Substituting Eq. (24) in Eq. (22) and solving for the parameter O that minimizes

thc following cost function,

e

J(e, e) = wiJI - 5, (25)
i=1

yields results similar to Eq. (11) except for the weighting factor.

In the next section, optimization-based approaches to further improve the least-

square solution arc discussed.

3 Nonlinear Optimization

Another approach to enhance the identified model is to use nonlinear programming

to tune the model parameters obtained from the solution to Eq. (10). Once the

solution, represented by the parameter matrix O, is computed using Eq. (18) or
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Eq. (22), a state-spacerealization is determined. The state-spacerealization canbc

in any canonicalform suchasSchurform, modal form, Jordanform, observableform,

etc. There are three different formulations consideredin this paper for parameter

optimization. The first formulation deals with a general system realization, and

utilizes nonlinear programming along with an eigenvalueassignmenttechnique to

optimize a subsetof system polesto improvethe agreementbetweenthe measured
transfer function andthe identified model. The secondformulation dealswith system

realizationsin the real Schuror modal forms,andusesasubsetof systempoles,aswell

assomenewly definedparametersto adjust the columns(rows) of the input (output)

influencematrix, asoptimization parameters.The third formulation is similar to the

second,but the input and output influencematricesare not directly adjustedby the

optimizer, rather, they arecomputedat everyoptimization stepthrough least-squares

procedures. In the first formulation, all system polesare reassignedsimultaneously
to the desiredvaluesgiven by the optimizer, via an eigenvalueassignmenttechnique.

In the secondand third approaches, each pole is individually reassignedby the

optimizer.

3.1 Parameter optimization: Eigenvalue Assignment

In this formulation, a subset of system poles are used as optimization parameters

to minimize a cost function, which measures the difference between the experimen-

tal transfer function and the identified transfer function over frequency range of in-

terest. Of course, the direct approach _vould be to use the elements of the state

matrix directly, with equality constraints to reassign the poles. However, this ap-

proach is computationally expensive since it requires too many design parameters.

Let (A0, B, C, D) represent an initial realization for the identified system. As men-

tioned earlier, to determine the changes in the state matrix, A0, which reflects the new

pole locations (as defined by the optimization), an eigenvalue assignment technique is

employed. Specifically, the eigenvalue assignment technique discussed in Ref. [10] is

used, which is a sequential algorithm well-suited for partial assignment of eigenvalues

in large-order systems.
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Assumethat the optimizer requiresa subsetof systempolesto be reassignedto

Ad.Now, considera system(A0,/)), where/) is an n x r random matrix representing

an arbitrary input influence matrix. The matrix /) can have as many columns one

would like, however, a reasonable choice would be max(m, r). The change in the state

matrix that would reassign the poles to Ad is given by the gain matrix F such that the

eigenvalues of A0 -/_F are assigned to _d. Since the matrix/) has typically more than

one column, the gain matrix F is not unique, i.e., there is freedom beyond eigenvalue

assignment. This freedom is used to minimize the norm of the gain matrix, and

hence, the effective changes in the state matrix. The reader is referred to Ref. [10] for

a detailed description of the eigenvalue assignment algorithm. Once the gain matrix

F is computed, the new system realization is given by (A0 -/)F, B, C, D), i.e.,

O(zk) = C(zkI,_ - Ao +/)F)-' B + D (26)

In the next section, an optimization problem is posed for this approach.

3.1.1 Absolute Error Cost Function

Using a measure of the absolute error as the cost function, the optimization problem

for system identification enhancement is defined as follows:

minimize J:

J = IIG(zk)-  (zk)llF (27)

over

subject to

I sl < 1

Here, )_ represents a subset of the poles of the identified system G(zk) which

are used as design parameters, and I IF denotes the Frobenius norm. The constraint

on the modulus of ,_8 guarantees the stability of the identified system, and can be

omitted if stability is not of concern. The computational procedure is as follows:

1. Compute new pole locations, )_s using optimizer.
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2. Determine the new state matrix, with eigenvalues at A,, using the sequential

eigenvaluc assignment technique described in Ref. [10].

3. Update the identified transfer function matrix G(zk) from Eq. (26), and compute

the cost function J from Eq. (27).

The number of poles that can bc uscd as design parameters in the optimization is

arbitrary. One can use all the poles in the system, or just a fcw, for example, the real

poles of the system. If one starts the optimization with a system realization from the

least-squares solution of Eq. (13), then it is very likely that the complex poles of the

identified system, representing resonant peaks in the frequency response plots, match

the experimental results well, and hence need not be manipulated any further. In

such a case, real poles of the system and unstable poles, real or complex, are the best

candidates for design optimization. However, one could conceivably use the modulus

of all complex poles, which determine the damping associated with each mode, as

design parameters as well.

One of the problems with nonlinear programming is the tendency of the solution to

converge to a local minimum. The problem becomes more aggravated as the number

of design parameters increases. One way to deal with this problem is to restart the

optimization from another set of design points in the neighborhood of the last optimal

design. Another way of avoiding this problem is to introduce an additional constraint

requiring that the cost function be less than a desired value, i.e.,

J _< Ja (28)

This constraint would move many of the local minima to the infeasible region, thereby

avoiding them. An additional technique for dealing with local minima, which is more

specific to the optimization problem that is being solved, is to restart the optimization

of Eq. (27) with a new fictitious input influence matrix. Let /_1 represent the first

input influence matrix, then choose thc second influence matrix/}2 randomly from

the null space of/}1, i.e.,

B2 = N_IR1 (29)
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whereNT 1)1 = O, and 111 is a random matrix of appropriate dimensions. The transfer
Bx

function of the system is then computed as

O(_) = C(zkI,_ - A, + &F_)-'B + V (30)

with

A1 = A0 -/)iF1

Now, the optimization of Eq. (27) is restarted with t)2 as the input influence matrix.

This process can be continued until either an acceptable cost function is achieved

or the computational burden of optimization outweighs any reductions in the cost

function.

The cost function in Eq. (27), which is the Frobcnius norm of the error in the

transfer functions (experimental and identified), is dominated by the peaks (reso-

nants) of the transfer functions. Hence, optimization with Eq. (27) works well in

reducing the errors at or around those peaks, or wherever the transfer function mag-

nitude is significant, but it may not do much in reducing the errors elsewhere, e.g.,

zeros. In fact, the errors around the valleys might become worst. An approach to

deal with this problem is presented next.

3.1.2 Relative Error Cost Function

A more equitable trade between the errors for peaks and valleys can bc obtained by

considering a complementary optimization problem, wherein a norm of the relative

error is optimized instead of the absolute error given in Eq. (27). The optimization

problem is posed as

minimize J2:

over

subject to

J2 = II[a(zk) - O(zk)J./a(z_)JIF (31)

AS

J<&
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IAsl < 1

Here, J is the _obemus norm of the absolute error given by Eq. (27) and "./"

denotes element by element division. The upper bound limit Ja can be any desired

value, but might bcsct at the optimal value of J, using a previously computed value

from Eq. (27), or might be set at the value of J from an initial least-squares solution.

Similarly, the initial values of the design parameters may be set to previously obtained

optimal values from the optimization problem in Eq. (27), or may be set to the values

obtained from a least-squares solution.

The second nonlinear programming approach for least-squares solution improve-

ment is described next.

3.2 Parameter optimization: direct approach

A subset of system poles, as well as some additional coefficients to adjust the columns

(rows) of the input (output) influence matrix, is used as optimization parameters.

Thc optimizer adjusts these parameters to minimize the difference between the ex-

perimental transfer function and the identified transfer function over frequency range

of interest. In this approach, the identified state matrix A is first transformed to

a real Schur canonical form or modal form. The system poles, which reside on the

diagonal elements or 2 × 2 block diagonal partitions of the state matrix, are directly

changed via optimization. The additional design parameters include coefficients for

a set of basis vectors, which affect the input (output) influence matrix. To minimize

the number of optimization parameters, the smaller of the input or output influence

matrices is chosen for parameterization. Assume that the input influence matrix is

the smaller of the two, i.e., there are more outputs than inputs, and let (A, B0, C, D)

represent an initial realization for the identified system. Then, paramcterize the input

influence matrix B as

B = BoS + N_oR (32)

where the matrix NB0 is an n x q matrix whose column span the null space of the

matrix B0, that is

NTo Bo = 0

14



and S and R are r × r and q × r coefficient matrices, respectively. An optimiza-

tion problem, using an absolute error cost function, is discussed next using these

parametcrs.

3.2.1 Absolute Error Cost Function: Direct Approach

The optimization problem is similar to the previous formulation derived for the eigen-

value assignment technique, and is summarized as

minimize J3 :

over

subject to

= IIC( k) - (2(zk)ll, 

blkdiag(A), S, R

(33)

Ih(blkdiag(A)[ < 1

Here, G(zk) represents the system realization given by

G(zk) = C(zkIn - A)-IB + D (34)

The term blkdiag( ) denotes a subset of the 2 × 2 block diagonal of (). The constraint

on the modulus of h(blkdiag(A)) guarantees thc stability of the identified system, and

can be omitted if stability is not of concern. The number of poles (cigenvalues), that

are used as design parameters, is specified the designer. One can use all the poles in

the system, or just a few, for example, thc real poles of the system. In rcal Schur

form or modal form, the real poles (eigenvalues) are on the diagonal, while the pairs

of complex conjugate poles (eigenvalues) reside in the 2 × 2 block diagonals, in the

following form
F

real(hi) imag(hi)
--imag(hi) real(hi)] (35)

where the real( ) and imag( ) denote the real and imaginary parts, respectively. Care

must be taken during parameterization to ensure those elements of the 2 x 2 block

diagonals are parameterized properly so that complcx conjugate pair remains intact

throughout the optimization proccss.

15



In the next section,a complementaryoptimization problem is describedusing a
relative error cost function.

3.2.2 Relative Error Cost Function: Direct Approach

A complementary optimization problem, wherein a norm of the relative error is opti-

mizcd, may be used in order to provide a more equitable trade between errors in the

peak and valley regions of the transfer function matrix. This optimization is defined

as

J4 = II[G(z ) - (36)

over

subject to

blkdiag(A), S, R

I£(blkdiag(A)l < 1

Here, -]3 is the Frobenius norm of the absolute error given by Eq. (33), J3_ can be any

desired value, but it is often set to a previously computed value for Ja in Eq. (33),

or the value of J from in initial least-squares solution. Similarly, the initial values

of the design parameters may bc set to the previously computed optimal values for

the optimization problem of Eq. (33), or may be set to the values obtained from a

least-squares solution.

The third nonlinear programming approach for least-squares solution improvement

is described next.

3.3 Parameter optimization: Least-Squares

This method starts with selecting a subset of system poles as optimization parameters

to minimize the error between the experimental and the identified transfer functions

over frequency range of interest. The optimizer reassigns the systcm poles, which

reside on the diagonal elements or 2x2 block diagonal partitions of the state matrix.
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At eachoptimization step,correctionsaremadeto the B, C, and D matrices through

two least-squares solutions.

similar to the previous two nonlinear programming approaches, two optimization

problems are presented in the next two sections, one using an absolute error cost

function and the other using a relative error cost function.

3.3.1 Absolute Error Cost Function: Least-Squares

let (A, B0, Co, Do) represent an initial realization for the identified system, and pa-

rameterize the input and output influence matrices as follows,

B = BoSb + NBoRu = [ Bo NB ] RB -- BQB (37)

[co ]=-QcC (38)C= ScCo + RcNco = (Sc Rc ) Nco

where the columns of NBo represent a set of basis vectors in the null space of B0, the

rows of Nco represent a set of basis vectors in the null space of Co, and QB, defined

in terms of SB and RB, and Qc, defined in terms of Sc and Re, arc the appropriate

coefficient matrices. These coefficients are determined, at each optimization step, by

solving least-squares-based corrections of the absolute error norm. The optimization

problem is given as

minimize ,]5:

J_ = IIG(zk) - G(zk)llf (39)

over

subject to

blkdiag(A)

IA(blkdiag(A))l < 1

The complex matrix G(zk) represents a system realization given by

O(zk) = C(zkln -- A)-IB + D (40)

The constraint on the modulus of A(blkdiag(A)) guarantees the stability of the iden-

tified system, and can be omitted if stability is not of concern. At each optimization
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step, asa new state matrix A is defined, corrections are performed to the B and D

matrices via a least-squares solution, followed by corrections to the C and D matriccs.

These solutions are defined next.

First, let -G(zk) = G(zk) - D, and repartition the nd× (mx r) transfer function

matrix, G(z_), columnwisc, such that each column of the repartitioned (rid X m) x r

matrix, Gcoz, is associated with an input.

Define _(zk) = Co(ZkI,_- A)-I-B, repartition -_(Zk) similar to G_ot to obtain _ol,

and define the absolute error function as

e = G_ot - G_otQB (41)

Now, solve for QB, in a least-squares sense, to obtain

___T -- 1-_T __
QB = (GcotGcoi)- GcolGcol (42)

Once, QB is computed, then D is computed as

D = pt (O(zk) -- Co(zkIn - A)-IB) (43)

where #( ) denotes the mean over frequency points.

To computc Qc, first define G(zki =--G(zk) -- D, and repartition the na x (mx r)

transfer function matrix, G(zk), rowwise, such that each row of the repartitioned m x

(n_ × r) matrix, Gro_, is associated with an output. Define _(zk) = C(zkI_ - A)-iB,

repartition _(zk) similar to Gro_ to obtain _o_, and define thc error function as

e = Grow - QcG_o_ (44)

Now, solve for Qc, in a least-squares sense, to obtain

__ AT __ AT

Qc=a_.,,_Grow(a._o_G,.o_) -_ (45)

Once, Qc is computed, then D is recomputed as

D = # (G(zk) - C(zkI, - a)-lB) (46)

The number of poles (eigenvalues) that can be used as design parameters is somewhat

arbitrary. One may use all the poles in the system, or just a few, for example, the

real poles of the system.
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3.3.2 Relative Error Cost Function: Least-Squares

Similar to the previous cases, the cost function is written in terms of a norm of the

relative error to provide a more equitable trade between errors in the peak and valley

regions of the transfer function matrix. This optimization problem is defined as:

minimize g6 :

J_ = II[G(zk) - G(zk)]./G(z_)lIF (47)

over

subject to

blkdiag(A)

J5 <

IA(blkdiag(A)l < 1

Here, J5 is the Frobenius norm of the absolute error given by Eq. (39), J5, can be any

desired value, but it is often set to a previously computed value for J5 in Eq. (39),

or the value of J from in initial least-squares solution. Similarly, the initial values

of the design parametcrs may be set to thc previously computed optimal values for

the optimization problem of Eq. (39), or may be set to t he values obtained from a

least-squares solution. The transfer function matrix G(zk) is the same as that used

for the pervious optimization problem, and is provided by Eq. (40), and the input

and output influence matrices B and C are expanded following Eqs. (37)-(38).

Now, there arc two possible approaches for performing the least-squares-based

corrections to the B, C, and D matrices. The first approach is to use the proce-

dure outlined earlier for computing the coefficient matrices QB (Eq. (42)) and Qc

(Eq. (45)), exactly. That procedure is based on a least-squares correction of the abso-

lute error norm. The second approach is to compute these coefficient matrices from a

lcast-squaxes correction of the relative error norm. However, the least-squares prob-

lems, whose solutions yield the coefficient vectors QB and Qc, are somewhat different

because they use a relative error norm instead of an absolute error norm. Without

going into details of this alternative, the equations arc fairly similar to thosc obtained

for the absolute error case, with three exceptions. First, instead of two least-squares
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problems,one for input influencematrix correctionand onefor output influencema-

trix correction,therewouldbc r least-squares problcms for the input influence matrix

correction, one for each column of the B matrix, and m lcast-squares problems for

the output influence matrix correction, one for each row of the C matrix. The second

cxception is that one column (row) of the matrix Gcot (Grow), at a time, is used for

each least-squares problem, with all its elements replaced by ones. The last exception

is that the columns (rows) of G_ol(Gro_) are normalized by the elements of G_ol(Grow).

4 Applications

This section describes the application of the proposed techniques to the system iden-

tification for the PARTI wind-tunnel model [12], a laboratory test structure at NASA

Langley. The model is a five-foot long, high aspect ratio wing designed to fluttcr at

low speeds to simplify aerodynamic analyses and wind-tunnel testing. The fully as-

sembled semi-span model is shown in Fig. 1. The model has a total of 72 actuators

bonded to both sides of the plate. Each actuator contains two stacks of two 0.01

inch piezoelectric patches. The 72 actuators are hardwired to actuate in 15 different

groups. The 15 groupings were chosen such that each group primarily affects one of

the first three natural modes. Each group can be considered as one input, because all

the actuators in the group use the same signal. The piezoelectric patches were only

used for actuation; ten strain gages and four accelerometers were used as sensors. As

a result, there are a total of 15 inputs and 14 outputs.

4.1 Weighted Least-Squares Solution

In the first application, the transfer function from input No. 1 to all outputs is

considered for identification. With signals from 14 sensor outputs (m = 14), input

No. 1 (r = 1), and 10th order polynomials (p = 10) used in the matrix-fraction

expansion (sce Eqs. (1)-(3)), a weighted least-squares solution was first obtained

from Eq. (22), using an exponential weighting function, given as

w k" k =0,1, t_
• " ° ,
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Here, k = 0 refers to the zero frequency component of the FRF often known as

the direct current (DC) term in electrical engineering, and w was chosen at 0.98.

By adjusting the value of w one may emphasize the low frequencies or the higher

frequencies. Values of w less than 1 would emphasize the lower end of the frequency

spectrum. Here, w was set to 0.98, to emphasize the range of frequency from 0 to

25 Hz. The weighted least-squares solution resulted in an identified model of order

140, which included 4 unstable poles. However, since the actual tcstbed is stable, it

is desired to obtain a stable identified model. Truncating the unstable states yielded

a 136-order state-space realization of the system. Magnitude and phase FRF plots

for outputs No. 7 and 10 are shown in Figs. 2 and 3, respectively.

Comparison of the plots indicates an excellent agreement between the experimen-

tal FRF (solid line) and the identified FRF (dashed line), particularly around the

peaks of the FRF or where the gain values are significant. However, discrepancies

can be observed around some of the zeros as well as where the gain values are small.

This should be expected as the least-squares problem is dominated by the peaks and

large gain values. Further inspection of these plots also indicates that the agreement

between the experimental and identified results is better in the 0-25 Hz range. The

Frobenius norm of the error between the experimental and identified transfer func-

tions was computed at 90.128, the majority of which is duc to the differences between

two FRFs at DC frequency. In fact, since the DC gain values arc quite large, par-

ticularly in some output channels, they tend to dominate the rest of the FRF in a

least-squares solution. Keep in mind that the DC gain values may not be accurate

due to the use of accelerometers and their insensitivity at very low frequencies, drift

problems that hampers accurate measurements, and lack of sufficient data. There-

fore, in this case, it is reasonable to de-emphasize the DC values by assigning a zero

value to the corresponding weighting function, such that the DC weight is set to

zero. The Bode plots, using the modified weighting function, are shown in Figs. 2 and

3 as dashed-dotted lines. These figures indicate moderate improvements in various

frequency ranges. The Probenius norm of the error between the experimental and

identified transfer functions was computed at 90.134, a very minor change from the
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previous results, indicating that little in terms of minimizing the overall error is lost.

Comparing, the norm of the error for all frequency points except DC, shows that the

error went down from 0.241 to 0.223, which quantifies the better match by using the

modified weighting function.

In order to show the effectiveness of the modified exponential weighting, a polyno-

mial with p = 3 is used in the matrix-fraction description. The weighted least-squares

solution resulted in a stable identified model of order 40. Figures 4 and 5 illustrate

the stable least-squares solutions for the nominal and modified exponential weight-

ings for outputs No. 7 and 10. These figures clearly demonstrate the advantage of

modified exponential weighting for this problem. In fact, the Frobenius norm of the

error between the experimental and identified transfer functions dropped from 12.035

to 0.3021, a significant improvement.

4.2 Further Enhancements: Nonlinear Programming

To dcmonstrate the potential of the nonlinear programming approaches to further

enhance the least-squares solution, the direct optimization approach is applied to an

identified model for the PARTI testbed, obtained from a least-squares solution. Three

optimization problems were considered and carried out in this application. The first

optimization approach was the one posed in Eq. (33), minimizing the Frobenius norm

of the absolute error cost function for all frequency points except the DC, using as

design variables the real poles of the identified plant as well as the coefficients of the

basis vectors, S and R, from Eq. (32). The initial least-squares solution provided a

stable model of order 40, with 6 real poles. This model was transformed into modal

form to make it amenable to optimization with the direct approach. There were 26

design variables used in the optimization, the first 6 being the values of the rcal poles

of the system, the 7th representing the coefficient S (see Eq. (32)), and the remaining

19 representing the elements of the coefficient vector R (see Eq. (32)), corresponding

to 19 basis vectors from the null space of the matrix B0. It should bc noted that one

could have included the complex poles of the system as design variables too. However,

it was concluded that this may not be necessary since the dominant poles (resonances)
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of the system were captured by the least-squares solution, as observed from Figs. 4

and 5. The optimization included 7 constraints, the first six to assure the stability

of the system as thc poles were reassigned, and the last constraint on the value of

the error norm to avoid convergence to undesirable local minima. The optimization

was performed using the Automated Design Synthesis (ADS) software [13]. The

interior penalty function method of ADS was used to solve the nonlinear programming

problems. In this method, the constrained optimization problem is transformed into

an unconstrained problem through creation of a objective function which is the sum of

the original objective function and an imposed penalty function (which is a function

of the constraints) [14]. The initial solution used in the optimization was that of

stable least-squares solution with modified exponential weighting. The optimization

reduced the norm of the absolute error from the initial value of 0.302 to 0.285. The

optimization was repeated once with a new input influence matrix bases. These bases

included the initial influence vector, along with a new set of 19 random basis vectors

from the null space of the matrix [B0 NBo]. The second optimization run reduced

the norm of the error from 0.289 to 0.249, which is fairly close to 0.223, the error

norm corresponding to the stable least-squares'solution with p = 10. This process

could have been continued further, however, it was deemed that the computational

burden would outweigh any additional reductions in the norm of the error. The Bode

plots, comparing the transfer function matrices for the experimental, nominal, and

optimal results arc provided in Figs. 6 and 7, for output No. 7 and 10, where it

is observed that the identified model, via optimization, performs well, almost at a

comparable level to that for p = 10. This is very encouraging, considering that the

optimization-based model is a 40th order model compared to 136th order model for

p= 10.

Figures 6 and 7 also indicate that there is room for improving the test and analysis

agreement around the transmission zeros and low gain regions. To accomplish this, a

second optimization problem was performed. This case used the formulation described

in Eq. (36), in which the Frobenius norm of the relative error is minimized. The initial

design used the optimal solution obtained from the first optimization problem. Similar
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to the first optimization, 26 design variables were used in the optimization, the first

6 being the location of the real poles of the system; the 7th represents the coefficient

S (see Eq. (32)); and the remaining 19 representing the elements of the coefficient

vector R (see Eq. (32)), corresponding to 19 basis vectors from the null space of the

matrix B0. In addition, 7 constraints were used, the first six to guarantee system

stability, and the last constraint to ensure that the Frobenius norm of the absolute

error remained equal to or below 0.249, the level obtained by the first optimization.

The optimization reduced the norm of the relative error from the initial value of

181.11 to 152.48. The optimization was repeated once more with a set of new input

influence matrix bases. The second optimization run reduced the norm of the error

from 152.48 to 118.34, and the optimization process was terminated. The Bode plots

for the experimental, nominal, and optimal results, for outputs No. 7 and 10, are

presented in Figs. 8 and 9. These figures illustrates a considerable improvement in

the optimal model in matching the area around the transmission zeros and low gain

regions of the transfer functions. These results demonstrate the advantages of further

enhancements to the least-squares solution.

Another optimization problem considered was the problem posed in Eq. (39) where

the Frobenius norm of the absolute error is minimized while adjusting the eigenvalues

of the state matrix, subject to stability constraints. Moreover, the optimization in-

cluded corrections to the B and D matrices, followed by corrections to the C and D

matrices, at each functional evaluation (sec Eq. (42)-(43) and (45)-(46)). The 6 de-

sign variables used in the optimization were the values of the real poles of the system.

The optimization included 7 constraints, the first six to guarantee the stability of the

systems as the poles were reassigned, and a constraint on the value of the error norm

to avoid undesirable local minima. The initial design used in the optimization was

was taken from a stable least-squares solution with modified exponential weighting,

i.e., zero DC weighting. The optimization reduced the norm of the absolute error

from the initial value of 0.250 to 0.197, which is over 20% reduction. Plots, compar-

ing the transfer function matrices for the experimental, nominal, and optimal results

are provided in Figs. 10 and 11, for output No. 7 and 11. The identified model (via
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optimization) agreesvery well with thc experimentaldata. Also note that output 11

is now shownasopposedto 10in the prcviouscases.This output sensorshowsmodes

around28and 38 Hz which are alsobeing identified.
All the identification resultsobtainedsofar werebasedon the 14transfer functions

from the first input to all 14outputs. Now, let us considerthe transfer functions from
all 15 inputs to all 14outputs for identification. With the signalsfrom all 14sensor

outputs (m = 14) and all 15 inputs (r -- 15), and 3rd order polynomials (p --

3) used in the matrix-fraction expansion(see Eqs. (1)-(3)), a weighted least square

solution was first obtained from Eq. (22). Similar to the previous cases, an exponential

weighting function was used, with parametcr w chosen at 0.98 to emphasize the range

of low frequencies. In addition, the DC weight was set to zero. The Frobenius norm

of the error between the experimental and identified transfer functions was computed

at 246.855, the majority of which is due to a discrepancy between two FRFs at the

DC frequency, i.e., zero frequency. The Frobenius norm of the absolute error, for

all frequency points except the DC, was computed to bc 1.721. For the purpose of

illustration, plots for the experimental and realized transfer functions are depicted in

Figs. 12 and 13, for outputs No. 7 and 11 with input No. 1, and in Figs. 14 and

15, for the samc outputs with input No. 8. The experimental transfer functions arc

shown as solid lines and the transfer functions, obtained via direct least square, as

dashed lines. These figures indicate moderate to good agreement between the transfer

functions in low frequencies ranges, particularly, around the peaks or high gain areas

of the transfer functions.

Now consider the least-squares optimization approach presented in Eq. (39) for

the 15 inputs and 14 output case. The initial design used in the optimization was the

stable least-squares solution with modified exponential weighting. This realization

had 14 real poles, whose locations were used as design variables in the optimization,

i.e., there were 14 design variables. The optimization included 15 constraints, the first

14 to guarantee the stability of the systems as the poles were reassigned, and the last

constraint on the value of the error norm to avoid convergence to undesirable local

minima. The optimization reduced the norm of the error from the initial value of
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1.165 to 1.090, about a 6.5% reduction. Plots, comparing for the experimental (solid

line), nominal (dashed line), and optimal transfer function (dashed-dotted line) are

provided in Figs. 12 through 15. It is observed that the identified model (obtained

via optimization) performs well, although only 3rd order polynomials was used in the

matrix fraction description to match a 15 input by 14 output transfer function. Com-

parison of Figs. 12 and 13 with Figs. 10 and 11, which correspond to the same input

and output channels, and were obtained from a single input identification problem,

reconfirms the good level of correlation obtained following the optimization-based

approach.

5 Concluding Remarks

Several techniques have been presented to identify an experimental system model

directly from frequency response data. The techniques used a matrix-fraction de-

scription (MFD) to describe the identified system. The MFD coefficients were ob-

tained from the solution of a weighted least-squares problem. Frequency weighting

concepts were introduced in order to emphasize a frequency range of interest. Three

optimization-based methods were introduced to fine-tune the experimentally realized

models. The first method uses an eigenvalue assignment technique to reassign a sub-

set of the system poles to enhance the approximation of the identified model. The

second method considers the model in the real Schur or modal form, and uses a subset

of system poles as well as additional parameters to adjust the columns (rows) of the

input (output) influence matrix in order to improve the model fit. The third method

optimizes a subset of the system poles, while the input and output influence matri-

ces arc computed at every optimization step through least-squares procedure. The

methods wcre applied to data from PARTI wind tunnel model, a laboratory testbed

at NASA Langley Research Center. The benefits of the optimization-based refine-

ment teclmiqucs as well as frequency weighting techniques were demonstrated. It was

shown that with optimal fine-tuning and proper choice of frequency weighting a 40th

order system realization could provide almost the same level of model fit as a full-order
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136th order model. Specifically, the third optimization method provided the largest

improvement in the fit of the experimental data, with a 20-percent smaller absolutc

error norm than that obtained from the second optimization method. However, the

computational cost of performing the third optimization formulation was considerably

higher than the second optimization problem, primarily due to the large least-squares

solutions that were solved at every optimization step to perform corrections to the

B, C, and D matrices. The optimizations used finite difference techniques to provide

gradient information on thc objective function and constraints. The numerical com-

putation of the gradients may require a large number of functional evaluation, which

would be costly in a computational sense. Alternatively, one may attempt to obtain

analytical expressions for the gradients, and perhaps second-order partial derivatives,

to improve computational efficiency and accuracy.
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Figure 1: PARTI Model
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Figure 10: Comparison of FRFs for Output No. 7 with least-squares optimiza-
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